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1.  CONTRACT OBJECTIVE  

  The objective of this MEA PRDA effort was to determine the efficacy of implementing 

a low-deformation cold rolling and recrystallization process to produce high creep resistant Fe-

Co alloys at high temperature with excellent soft magnetic properties. These alloys will be used 

in aerospace electrical systems, such as auxiliary power sources in aircraft.  Fe-Co alloy 

materials that have improved creep resistance at 600°C, achieved by a substantial increase in 

grain size, were developed through a systematic study of the cold rolling/recrystallization 

parameters and their influence on high temperature creep behavior.   

 

2.  BACKGROUND 

2.1 Requirement for High-Temperature Soft Magnetic Materials 

  New high temperature magnetic materials are enabling technologies for the 

development of new power components such as magnetic bearings, Integrated Power Units 

(IPU), and Internal Starter/Generators (IS/G) for aircraft main propulsion engines.  There is 

also potential impact in the automotive industry, particularly electric vehicles.   

  As an example of the need for improved soft magnetic materials and their application to 

aerospace power systems, the United States Air Force (USAF) is currently developing several 

power generation devices and magnetic bearings as part of its More Electric Aircraft Initiative 

(MEA).  These power generation devices and magnetic bearings require operation at elevated 

temperatures and stress levels never before required for such components.  The systems being 

designed and evaluated in the MEA employ soft magnetic materials that require operation at 

temperatures approaching 550 to 600ºC, while rotating at speeds as high as 60,000 rpm.  The 

designs generally call for rotors and stators to be made by stacking thin (0.006") laminates of 
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the soft magnet material in sheet form, electrically isolated from one another to reduce eddy-

current losses.  These speeds create hoop stresses approaching 85 ksi, far beyond the creep 

strengths of current materials at those temperatures.  

  The development of new soft magnetic materials for high temperature applications to 

the ≈600°C range presents the theoretical as well as the practical challenge of enhancing the 

high temperature mechanical performance without degrading the magnetic properties.  In 

structural alloys the improvement in high temperature mechanical properties is achieved 

through a combination of alloying, processing, and grain morphology control.  For soft 

magnetic materials, however, some of these options may lead to degradation in magnetic 

behavior, or to an unacceptable mechanical embrittlement.   

2.2 Creep and Plastic Deformation 

  Plastic deformation in polycrystalline metals and alloys is a very complex topic in both 

theory and practice.  Among all parameters that affect plastic deformation of metals and alloys, 

especially pure metals and single-phased alloys, the characteristics of grain boundaries have 

special significance.  High temperature mechanical behavior is divided into three main 

categories: (a) short-term tensile strength, (b) long-term creep resistance, and (c) oxidation 

resistance.  This research project focused on the improvement in long-term creep resistance at 

600°C.  We analyzed and summarized results of previous research as follows and formed the 

technical basis of our proposed research effort:   

• The structure of high-angle grain boundaries resembles that of a super-cooled 

liquid.  In other words, grain boundaries are amorphous in nature.  This 

characteristic of grain boundaries greatly affects the mechanical properties of 

metals and alloys.   
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• The dominant mechanism for plastic deformation of metals and alloys at low 

temperatures is dislocation movement.  Grain boundaries impede dislocation 

movement and increase the strength.  Hence, grain boundaries are stronger than 

grain interiors at low temperatures.   

• As temperature increases, the grain boundaries, like all other glassy materials, 

eventually become softened, and above this temperature, grain boundaries are 

weaker than grain interiors.  

• For Fe-Co based alloys, 600°C represents a ≈0.5 Tm condition, where Tm is the 

melting point (expressed in absolute temperature).  A temperature of ≈0.4 Tm 

represents the start of the dislocation (or power-law) creep regime.  The 600°C 

temperature range is well into the Coble-creep regime and the majority of the 

creep deformation and damage are obtained from grain boundary sliding. 

• Therefore, there is a transition temperature, Ttr, below which fine grain structure 

is beneficial for mechanical properties.  Conversely, when the operating 

temperature is above Ttr, large grain structure is beneficial.  As mentioned 

above, as a rule of the thumb, Ttr is ≈0.4 Tm.  

2.3  Previous Approaches Improving Creep Resistance of Fe-Co Materials 

2.3.1  Grain refinement   

  Small amounts of Nb and/or C were added to Fe-Co alloy to refine its grain structure to 

achieve higher mechanical strength with only a slight sacrifice in magnetic properties.  

However, metals and alloys with fine grains have better mechanical properties only when the 

temperature is lower than Ttr.  The melting temperature of 50%Fe-50%Co alloy is 1480°C, 

leading to a Ttr for 50%Fe-50%Co of ≈430°C.  The operating temperature for Fe-Co based 
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alloy in MEA applications is ≈600°C, far beyond its Ttr.  Therefore, grain refinement is not 

appropriate for improving creep resistance of Fe-Co alloy at high temperatures. 

2.3.2 Dispersion strengthening   

  Dispersed Al2O3 particles were proposed to be added to Fe-Co-V alloys to improve its 

creep resistance at high temperatures.  Dispersed particles are certainly effective in improving 

mechanical strength by hindering dislocations and forcing them to climb and cross-slip.  

However, this approach is not an appropriate one to improve creep resistance at high 

temperatures (>Ttr).  At temperatures above Ttr, grain boundary sliding is primarily responsible 

for creep.  If dispersed particles are distributed mainly in grain interiors, the improvement of 

mechanical properties is more likely to happen at temperatures <Ttr, but not >Ttr.  Also, 

dispersed particles will pin not only dislocations, but also domain walls.  Therefore, in addition 

to reducing 4πMs of Fe-Co alloy, the addition of dispersed particles will reduce permeability, 

while also increasing coercive force and hysteresis loss.   

 

3.  APPROACH OF THIS RESEARCH EFFORT   

  It is intrinsically difficult to improve mechanical properties of a material and to 

maintain or improve its soft magnetic properties at the same time.  Usually, when a material is 

made mechanically harder, it becomes magnetically harder, as well.  However, by employing a 

unique approach, we can significantly improve high temperature creep resistance of Fe-Co 

alloy and, at the same time, its magnetic properties (permeability, coercive force, and hysteresis 

loss) can be also improved.   

  The basic concept of our approach was to minimize the grain boundary slide at high 

temperatures (>Ttr) by significantly reducing the volume of grain boundaries in the Fe-Co 
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alloy.  The weakness of the grain boundaries at high temperatures can be eliminated completely 

by using single crystal material.  Single crystal form created by directional solidification 

approach has been applied to Nimonic alloys used for turbine blades.  Making thin Fe-Co sheet 

in single crystal form is technically impractical.  In addition, magneto-crystalline anisotropy of 

a single crystal sheet may create other problems.  Our alternative approach was to make Fe-Co 

sheet with extraordinarily large grains.   

  In the commercial Fe-Co alloy sheet, the average grain size is about a few microns.  By 

applying a very simple process, it is possible to increase the grain size of the Fe-Co alloy in a 

hundred micron range.  Thus, the volume of grain boundaries can be significantly reduced.  

Therefore, the high temperature (≥430°C) creep resistance of Fe-Co alloy sheet can be 

significantly improved.  In addition, because grain boundaries, like any other crystal defects, 

impede domain wall movement, reducing the volume of grain boundaries will increase 

permeability, reduce coercivity and hysteresis loss of the Fe-Co alloy.  Therefore, this is an 

approach that simultaneously improves both mechanical and magnetic properties.  

  The unique characteristic of this approach is to utilize the critical cold deformation 

followed by normal recrystallization anneal to form extraordinarily large grains.  The 

recrystallization of cold-worked metals and alloys is a nucleation and growth process.  The 

driving force for this process comes from the stored energy of cold-work.  The recrystallized 

grain size depends upon the amount of deformation given to the metal before annealing.  

Generally speaking, the recrystallized grain size is related to the ratio of (N/G) where N is the 

rate of nucleation and G is the rate of growth.  The larger the (N/G), the finer the grain size will 

be. 
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  The critical amount of cold work is the minimum amount of cold deformation that 

allows the metal to recrystallize.  In the situation of critical deformation, the level of the stored 

energy of cold work is very low and N and (N/G) are also very low, resulting in very large 

grain size after annealing.   

 

4. EXPERIMENTS AND RESULTS 

4.1 Fe-Co-V Sheets Used in This Research Project 

The compositions of Fe-Co and Fe-Co-V sheets used in this study are given in Table 1.  

Among them, Hiperco 50A was obtained directly from Carpenter Technology Corporation and 

other alloys were obtained from Dr. Richard Fingers of AFRL/PRP, WPAFB.  All these Fe-Co 

or Fe-Co-V alloy sheets have thickness of 0.013”. 

Table 1.  Compositions of Fe-Co Alloys Used in This Study 

Composition (wt%)  

Alloy 

 
C Mn Si Cr Ni Nb V Co Fe 

Hyperco 27 0.01 0.25 0.25 0.60 0.60 - - 27 Bal 

Hyperco 50 0.01 0.05 0.05 - - 0.05 1.90 48.75 Bal 

Hyperco 50A 0.004 0.05 0.05 - - - 2.00 48.75 Bal 

Hyperco 50HS 0.01 0.05 0.05 - - 0.30 1.90 48.75 Bal 

 

4.2 Process Parameters 

  These alloy sheet specimens were degreased using acetone and, then, annealed in dry 

hydrogen at 850°C for 3 hours according to the parameters shown in Figure 1.  After the anneal, 

the alloy sheet specimens were cold rolled using three different deformation rate as shown in 

Table 2. 
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Figure 1.  Annealing parameters before and after cold rolling. 

 

Table 2.  Cold Deformation Parameters 

 
Specimen  

Set 

Original 
Thickness 

(mil) 

Final 
Thickness 

(mil) 

Cold 
Deformation Rate  

(%) 
1 6 5.7-5.8 3-5 

2 6 5.9 1.6 

3 6 5.6-5.7 5-6.7 
 

  The recrystallization anneal was performed after the cold rolling.  The cold-rolled 

specimens were annealed at 850°C for 3 hours in a dry hydrogen atmosphere.  The detailed 

parameters for the after-rolling anneal is also given in Figure 1. 

4.3 Microstructures 

4.3.1 Microstructures of commercial materials after annealing 

  As a comparison, the microstructures of the as-received commercial Fe-Co-V materials 

after annealing were observed using optic microscopy.  The annealing parameters were the 
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same as those shown in Figure 1.  Figures 2 through 4 show microstructures of commercial 

Hiperco 27, Hiperco 50, and Hiperco 50 HS, respectively.   

 
Figure 2.  Microstructure of commercial Hiperco 27. 

 

 
Figure 3.  Microstructure of commercial Hiperco 50. 
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Figure 4.  Microstructure of commercial Hiperco 50 HS.  

(Please note that the scale bar is 10 micron for this micrograph.) 

 

4.3.2 Microstructures of modified Fe-Co-V materials 

  The amount of cold deformation has strong effect on the grain size after the anneal.  

Very large grains can be obtained only when the cold deformation amount is 3% or slightly 

more than 3%.  It is not easy to obtain large grains when the cold deformation amount is 

beyond this range. 

  Figure 5 shows microstructure of a modified Hiperco 50 specimen that was cold rolled 

with a deformation amount slightly smaller than 3% and annealed at 850°C for 3 hours.  The 

grain size is only slightly larger than those of commercial Hiperco 50. 

  Figures 6 and 7 show microstructures of two modified Hiperco 50 specimens that were 

cold rolled with deformation amounts slightly more than 3% and exactly 3%, respectively, and 

after annealing at 850°C for 3 hours.  In both cases, very large grains were obtained.  Most 

grains are of a few hundred micrometers. 



 10

 

Figure 5.  Microstructure of a modified Hiperco 50 specimen that was cold rolled with 

deformation slightly less than 3%. 

 

 

Figure 6.  Microstructure of a modified Hiperco 50 specimen that was cold rolled with 

deformation slightly more than 3%. 
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Figure 7.  Microstructure of a modified Hiperco 50 specimen that was cold rolled with 

deformation equal to 3%. 

   

  Figures 8 and 9 show microstructures of modified Hiperco 50A and Hiperco 27, 

respectively.  Very large grains were obtained in both specimens.  Figure 10 shows 

microstructure of a modified Hiperco 50HS.  Quite different from alloys mentioned above, cold 

rolling with 3% deformation and the subsequent annealing did not significantly change the 

grain size of the Hiperco 50HS alloy sheet.  Apparently, the small additive of Nb in this alloy 

hindered the grain growth. 

  Sometimes, especially when the cold rolling amount was shift off the optimum 

deformation amount, non-uniform grain structure can be obtained.  Figures 11 and 12 show 

microstructures of modified Hiperco 50 and Hiperco 50A specimens, respectively.  In both 

cases, a mixture of large and small grains was obtained. 
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Figure 8.  Microstructure of a modified Hiperco 50A specimen that was cold rolled with 

deformation slightly more than 3%. 

 
 

 
 

Figure 9.  Microstructure of a modified Hiperco 27 specimen that was cold rolled with 

deformation slightly more than 3%. 
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Figure 10.  Microstructure of a modified Hiperco 50HS specimen that was cold rolled with 

deformation slightly more than 3%.  

(Please note that the scale bar is 10 micron for this micrograph.). 

 

 
 

Figure 11.  Microstructure of a modified Hiperco 50 specimen. 
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Figure 12.  Microstructure of a modified Hiperco 50A specimen. 
 
 

4.4 Creep Tests 

4.4.1 Creep tests at 600°C 

 Creep tests at 600°C under 100 MPa, 120 MPa, or 150 MPa were performed for various 

commercial Fe-Co and modified Fe-Co alloy specimens.  Figure 13 compares the creep strains 

of the commercial Hiperco 27 and modified Hiperco 27 with large grains.  It can be seen from 

Figure 13 that the creep strain for both alloys are similar.  The difference is that the large grain 

Hiperco 27 could be subjected to more creep strains before the specimen was broken. 

 Figure 14 compares the creep strains of a commercial Hiperco 50 and a modified 

Hiperco 50 with large grains tested at 600°C under 120 MPa.  It can be seen from Figure 14 

that in the beginning of the creep test, the creep strain for he commercial and large grain Fe-Co-

V alloys are similar.  After 250 hours, the large grain Fe-Co-V displays smaller creep strain 

than the commercial F-Co-V alloy.  However, over time, the large grain Fe-Co-V displays an 

increased strain rate. 
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Figure 13.  Creep strain vs. time for commercial Hiperco 27 and modified Hiperco 27  

with large grains. 
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Figure 14.  Creep strain versus time at 600°C and 120 MPa for commercial Hiperco 50 

 and modified Hiperco 50 with large grains. 



 16

  Figure 15 shows creep strain versus time at 600°C under 150 MPa for a modified 

Hiperco 50A specimen with large grains.  Apparently, the modified Hiperco 50A alloy 

demonstrates much more creep strain than the modified Hiperco 50 alloy. 
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Figure 15.  Creep strain versus time at 600°C and 150 MPa for a modified Hiperco 50A 

specimen with large grains. 

 

  Figure 16 shows creep stain versus time at 600°C under 150 MPa for a commercial 

Hiperco 50 and a modified Hiperco 50 with large grains.  It can be seen that the modified large 

grain Hiperco 50 demonstrates much less initial creep than the commercial Hiperco 50.  After 

about 200 hours, the strain rate of the modified Hiperco increased.  Figure 17 compares the 

creep test results of commercial Hiperco 50, commercial Hiperco 50HS, and modified Hiperco 

50 with large grains.  Clearly, the small grain Hiperco 50HS shows the largest creep strain.  
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The Hiperco 50HS alloy was especially designed for improved mechanical strength (HS stands 

for high strength).  As shown in Table 1, this alloy contains 0.30 wt% Nb for grain refinement.  

The fine grain Hiperco 50HS may have improved mechanical strength at room temperature and 

temperatures lower than 600°C, However, at 600°C and 150 MPa its creep strain was much 

greater than that of commercial Hiperco 50 and modified Hiperco 50. 
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Figure 16.  Creep strain versus time at 600°C and 150 MPa for commercial Hiperco 50 and 

modified Hiperco 50 with large grains. 
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Figure 17.  A comparison of creep strains of commercial Hiperco 50, Hiperco 50 HS, and 

modified Hiperco 50 with large grains. 

 

  Figure 18 summarizes the creep behavior at 600°C for various materials.  The creep 

strain versus time for a composite Al2O3 coated Fe-Co material is also included in this figure.  

This composite material demonstrate a very low strain rate, indicating that a combination of 

low creep strain and low strain rate can be expected in ceramic/metal composite materials. 
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Figure 18.  A summary of creep behavior tested at 600°C for various materials. 

 

  Figure 19 shows the creep strain versus time for another set of commercial and 

modified Hiperco 50 specimens tested at 600°C under 150 MPa.  All modified Hiperco 50 

with large grains show lower creep strain than their commercial counterpart.  However, the 

commercial Hiperco 50 and some modified Hiperco 50 (specimens 2 through 4) demonstrate 

higher creep level as compared with the results shown in Figure 16. 
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Figure 19.  Creep strain vs. time for another set of commercial and modified  

Hiperco 50 specimens tested at 600°C under 150 MPa. 

 

4.4.2 Creep tests at 550°C and 650°C 

  The creep test was also performed at 550°C and 650°C under 150 MPa for commercial 

Hiperco 50 and modified Hiperco 50 with large grains.  Figure 20 shows the creep strain versus 

time for a commercial Hiperco 50 and a modified Hiperco 50 tested at 550°C under 150 MPa.  

This test shows that the modified Hiperco 50 has much more creep strain than the commercial 

Hiperco 50.  Figure 21 shows the creep strain versus time for a commercial Hiperco 50 and a 

modified Hiperco 50 tested at 650°C under 150 MPa.  In this case, the modified Hiperco 50 

demonstrates slightly low creep strain than the commercial Hiperco 50. 
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Figure 20. Creep vs. time for commercial Hiperco 50 and modified Hiperco 50 at  

550°C under 150 MPa. 
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Figure 21. Creep vs. time for commercial Hiperco 50 and modified Hiperco 50 at 650°C under 

150 MPa. 
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It seems that a transition temperature exists at a temperature lower than 600°C and higher than 

550°C.  Below this transition temperature, the small grain Fe-Co-V alloy has better creep 

resistance, while above this transition temperature, the large grain Fe-Co-V alloy shows better 

creep resistance.  However, since only very limited number of specimens was tested at 550°C 

and 650°C, more experiments are need in order to more accurately define this transition 

temperature. 

4.5 Magnetic Properties 

4.5.1 DC magnetic properties 

  Ring specimens were cut from the commercial Hiperco 50 and the modified Hiperco 50 

with large grains and, then, magnetic characterization was performed on the ring specimens.  

The DC magnetic measurements results are give as follows.   

  Figures 22 and 23 show DC hysteresis loops of modified Hiperco 50 with large grains 

and commercial Hiperco 50, respectively.  It is obvious that the modified Hiperco 50 with large 

grains obtained in this research program has much better soft magnetic characteristics. 

  Figures 24 and 25 compare their permeability.  It is very clear that the modified Hiperco 

50 with large grains has much higher maximum permeability.  Comparisons pf magnetic 

properties of these two types of materials are also given in Table 3. 

  Figures 26 through 28 show saturation induction, remanence, coercivity, and 

permeability of another set of modified Hiperco 50 specimens, respectively. 
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Figure 22. Hysteresis loop of modified Hiperco 50 with large grains. 
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    Figure 23.  Hysteresis loop of commercial Hiperco 50. 
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Figure 24.  Permeability of Fe-Co-V alloy with large grains. 

 

0 10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

Commercial Hiperco 50

 

 

P
er

m
ea

bi
lit

y

Magnetic field (Oe)
 

Figure 25.  Permeability of commercial Hiperco 50 alloy. 
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Table 3. DC Magnetic Properties of Fe-Co-V Alloy with Large Grains and 

Commercial Hiperco 50 

 
Material 

Coercivity, Hc 
(Oe) 

Maximum 
Permeability, µ 

Fe-Co-V with 
Large Grains 0.639 9547 

Commercial 
Hiperco 50 1.255 5607 
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Figure 26.  Hysteresis loop of a modified Hiperco 50 specimen showing saturation induction. 
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Figure 27.  Hysteresis loop of the modified Hiperco 50 specimen  

showing remanence and coercivity. 
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Figure 28.  Permeability of the modified Hiperco 50 specimen. 
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  Figures 29 through 31 show saturation induction, remanence, coercivity, and 

permeability of commercial Hiperco 50, respectively. 
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Figure 29.  Hysteresis loop of a commercial Hiperco 50 specimen  

showing saturation induction. 
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Figure 30.  Hysteresis loop of the commercial Hiperco 50 specimen  

showing remanence and coercivity. 
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Figure 31.  Permeability of commercial Hiperco 50 specimen. 

  

  Table 4 compares magnetic properties of commercial Hiperco 50 and modified Hiperco 

50 with relatively large grains.  Apparently, the modified material demonstrates higher 

induction at 100 Oe, higher remanence, lower coercivity, especially higher permeability.  

Because grain boundaries serve as a resistance to domain wall motion, these experimental 

results are easy understood. 

Table 4.  Magnetic Properties of Commercial Hiperco 50 and Modified Hiperco 50  

 
 

B at 100 Oe 
(G) 

Br 
(G) 

Hc 
(Oe) 

µ 

Modified 
Hiperco 50 20,644 10,290 0.46 185,072 

Commercial 
Hiperco 50 20,555 8,880 0.53 8,177 
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4.5.2 AC magnetic properties 

  Ring specimens were cut from the modified Hiperco 50 specimens with large grains.  

AC magnetic characterizations were performed on these specimens.  Figures 32 and 33 show 

magnetization curves and permeability at various frequencies, respectively.  These magnetic 

properties are similar as compared with commercial Hiperco 50 alloy.   

  Figure 34 shows the core losses of modified Hiperco 50 and commercial Hiperco 50 at 

50, 100, 200, and 300 Hz.  At these frequencies, the commercial Hiperco 50 demonstrates 

slightly lower core losses (lower curve for each frequency.).  Figure 35 shows the core losses of 

modified Hiperco 50 and commercial Hiperco 50 at 400, 500, 700, and 1 kHz.  At these 

frequencies, the modified Hiperco 50 shows slightly lower core losses (lower curve for each 

frequency.)  Finally, Figure 36 shows the core losses of modified Hiperco 50 and commercial 

Hiperco 50 at 1.5, 2, and 3 kHz.   
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Figure 32.  Magnetization curves of modified Hiperco 50 at a DC magnetic field and at AC 

magnetic field with 50 Hz, 100 Hz, 200 Hz, 400 Hz, 1 kHz, 2kHz,  

and 3k Hz, respectively. 
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Figure 33.  Core losses of modified Hiperco 50 and commercial Hiperco 50 at  

50, 100, 200, and 300 Hz. 
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Figure 34.  Core losses of modified Hiperco 50 and commercial Hiperco 50 at 50, 100, 200, 

and 300 Hz.  For each frequency, the lower curve is for commercial Hiperco 50. 
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Figure 35.  Core losses of modified Hiperco 50 and commercial Hiperco 50 at 400, 500, 700, 

and 1 kHz.  For each frequency, the lower curve is for modified Hiperco 50. 
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Figure 36.  Core losses of modified Hiperco 50 and commercial Hiperco 50 at  

1.5, 2, and 3 kHz.   
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   The core losses of modified Hiperco 50HS and commercial Hiperco 50HS were also 

determined at various frequencies.  Figure 37 shows the core losses of modified Hiperco 50HS 

and commercial Hiperco 50HS at 500 HZ and 3 kHz.  It can be seen from Figure 37 that the 

modified Hiperco 50 HS has higher core losses than it commercial counterpart.  As mentioned 

previously, because of the special composition of the Hiperco 50HS alloy, modifying 

commercial Hiperco 50HS by cold rolling and annealing actually does not significantly alter 

the grain size.  Therefore, the core loss increase should be resulted from something other than 

grain size. 
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Figure 37.  Core losses of modified Hiperco 50HS and commercial Hiperco 50HS  

at 500 HZ and 3 kHz. 

 

 

 




